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We have studied the statistical and systematic errors which arise in Monte 
Carlo simulations and how the magnitude of these errors depends on the size 
of the system being examined when a fixed amount of computer time is used. 
We find that, depending on the degree of self-averaging exhibited by the quan- 
tities measured, the statistical errors can increase, decrease, or stay the same as 
the system size is increased. The systematic underestimation of response func- 
tions due to the finite number of measurements made is also studied. We 
develop a scaling formalism to describe the size dependence of these errors, as 
well as their dependence on the "bin length" (size of the statistical sample), both 
at and away from a phase transition. The formalism is tested using simulations 
of the d =  3 Ising model at the infinite-lattice transition temperature. We show 
that for a 96 • 96 x 96 system noticeable systematic errors (systematic under- 
estimation of response functions) are still present for total run lengths of 106 
Monte Carlo steps/site (MCS) with measurements taken at regular intervals of 
10 MCS. 

KEY WORDS: Monte Carlo; statistical errors; systematic errors; Ising 
model. 

1. I N T R O D U C T I O N  

W h e n  p l a n n i n g  a M o n t e  C a r l o  ( M C )  i n v e s t i g a t i o n  of  a s t a t i s t i ca l  m e c h a n i -  

cal  m o d e l  w i t h i n  a f ixed c o m p u t a t i o n a l  b u d g e t  o n e  is f aced  w i t h  a diff icul t  

c h o i c e  b e t w e e n  p e r f o r m i n g  l o n g  s i m u l a t i o n s  of  s m a l l  s y s t e m s  o r  s h o r t e r  

s i m u l a t i o n s  of  l a r g e r  sys tems .  (1) I n  o r d e r  to  use  the  a v a i l a b l e  c o m p u t e r  t i m e  

as ef f ic ient ly  as  p o s s i b l e  it is i m p o r t a n t  to  k n o w  the  s o u r c e s  o f  e r ro r s ,  b o t h  
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statistical and systematic, and how they depend on the size of the system 
and the number of updates performed. 

Statistical errors occur because of the necessarily finite number of 
measurements which one can make during an MC simulation. The statisti- 
cal uncertainty in the measured value of a quantity is proportional to n-1/2, 
where n is the number of independent measurements made. '{In general, 
successive measurements made during an MC simulation are not inde- 
pendent. This effect is well known and has been studied in detail (see 
ref. 2 for a recent review). Miiller-Krumbhaar and Binder (3) have shown 
that the number of "effectively" independent measurements n obtained 
from N correlated MC measurements taken at intervals of A t  MCS is 
approximately n = N / [ 2 ( r / A t ) +  1], where r is the integrated correlation 
time measured in MCS.} For thermodynamic quantities the propor- 
tionality constant between the statistical uncertainty and n - t / a  , which is 
simply the standard deviation of the measured quantity, depends on the 
thermodynamic parameters (temperature, pressure, magnetic field, etc.) as 
well as on the size of the system. This size dependence is related to the 
degree of se l f -averag ing  the quantity exhibits. (4/ For self-averaging quan- 
tities, the proportionality constant decreases as the system size increases. 

An obvious way to reduce the statistical error is to increase the 
number of measurements made. Unfortunately, for large systems this is 
often impossible due to constraints on available computer resources. A 
second approach to reducing statistical errors is to make use of the size 
dependence of the variance. If the variance of a self-averaging quantity 
decreases sufficiently rapidly with increasing system size, it may be possible 
to reduce the statistical errors by studying large systems even though the 
number of measurements which can be made is small. Milchev et  al. 

(MBH) (5) have addressed this question, but have not presented Monte 
Carlo data to test their predictions at a phase transition. - 

Systematic errors are more difficult to discuss because there are 
primarily two different kinds of systematic errors involved in MC sampling: 
those due to the finite size of systems studied and those due to the finite 
number of measurements made. (Additional errors which may arise due to 
correlations between the pseudorandom numbers generated for the simula- 
tion are not discussed here.) Finite-size effects arise when the characteristic 
length scale associated with some process in a physical system is com- 
parable to or even larger than the linear dimension of the system being 
simulated. When this occurs, the behavior of the simulated system will 
systematically differ from the behavior of the infinite system. To obtain 
reliable information about the infinite-system behavior from simulations of 
finite systems, the linear dimension of the systems studied must be much 
larger than the correlation length 3. This provides a model-dependent 
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lower bound on the system sizes studied in an MC simulation. At a phase 
transition, where r becomes infinite, it is impossible to overcome finite-size 
effects. However, using finite-size scaling techniques, (6'7/one can make use 
of the finite-size effects to predict the properties of the infinite system. The 
system sizes must then be chosen large enough that corrections to finite- 
size scaling are not large compared to the other statistical and systematic 
errors. Although an understanding of finite-size effects is important for 
planning an MC study, we will concentrate our effort on the other kind of 
systematic errors in the present paper. 

Systematic errors due to the finite number of measurements made 
are particularly important in the MC sampling of response functions 
(susceptibility, specific heat, etc.) which are calculated from the measured 
variance of thermodynamic quantities. (These errors are also important in 
Monte Carlo renormalization group--MCRG(8~--calculations where the 
covariance of different operators is measured.) From elementary statistics 
(see, e.g., ref. 9) it is known that the measured variance of a distribution 
estimated using a finite number of independent samples is systematically 
lower than the true variance of the distribution. This systematic under- 
estimation of the variance leads to systematically low estimates of response 
functions. Because the correlation time in an MC simulation can depend on 
the system size, the importance of this systematic error can be different 
for different system sizes. This introduces an additional size-dependent 
systematic error in the MC sampling of response functions. Error analysis 
for importance sampling MC methods has been considered by others, (1~ 
but a coherent treatment at T C is still lacking. 

In this paper, we build on the work of MBH by considering the 
problem of the size dependence of statistical errors when the system being 
studied undergoes a phase transition. In addition, we consider the 
systematic errors in the MC sampling of response functions as mentioned 
above. In Section 2 we develop a formalism for estimating the statistical 
and systematic errors involved in the MC sampling of thermodynamic den- 
sities (energy and magnetization, for example) and their associated 
response functions (specific heat and susceptibility). In Section 3 we present 
a quantitative test of the formalism developed in Section 2 in a high- 
precision MC study of the d =  3 simple-cubic Ising model. In Section 4 we 
summarize the results obtained in Sections 2 and 3. 

2. THEORY 

In the introduction to this paper, we presented a qualitative overview 
of the different sources of statistical and systematic errors which arise in 
MC simulations. In this section we provide a more quantitative discussion 
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of how the magnitude of these errors depends on the size of the system 
being simulated and the number of measurements made during the simula- 
tion. The first part of this section deals with the size dependence of statisti- 
cal errors and its relation to the degree of self-averaging of the quantity 
measured. In the second part we discuss the systematic errors in the MC 
sampling of response functions. 

2.1. Stat ist ical  Errors and Sel f -Averaging 

We begin by defining the statistical error in a measured quantity. In 
our discussion we will consider the magnetization per particle m, although 
the arguments presented are valid for any thermodynamic quantity (energy 
per particle, magnetic susceptibility, etc.). This problem has been con- 
sidered in detail by Miiller-Krumbhaar and Binder, (3) who showed that the 
square of the error can be expressed, for large enough N, as 

(6m) 2 2(~/~t) + 1 zm 
N L d (1) 

where L d is the volume of the system, N is the number of measurements, 
made at regular time intervals At, and )~m is the susceptibility defined by 
)~m=Ld({m 2 } - -{m}2) .  The thermal average of a quantity is represented 
by ~. }. The correlation time z is defined as the sum from t = 1 to t = 
of the time-displaced autocorrelation function for the magnetization 

{m(O) re(t)} - (m > 2 
q)mm(t) = ~m 2 } -- <m} 2 

We will discuss the size dependence of statistical errors in terms of the 
relative error r given by 

r ( m }  - -  La-~-m} ~ (2) 

This differs from the approach taken by MBH, who worked with the 
absolute statistical errors. Away from a phase transition, where they con- 
centrated their effort, the magnetization is fairly independent of system size, 
so that the absolute errors and the relative errors have the same size 
dependence. At a phase transition, however, some intensive quantities, such 
as an order parameter that vanishes, will have a strong size dependence, so 
that absolute and relative errors are no longer equivalent. 

The term zm/La(m}  2 in (2) can be rewritten as ( (m2} - ( re}z) /  
( m )  2, which is the expression for the relative fluctuations of m. We can 
relate the size dependence of the relative fluctuations to the degree of self- 
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averaging of the quantity in question. Assuming that the relative fluctua- 
tions vary as a power of the system size L x, we find: 

1. If x = d, the quantity is strongly self-averaging. 

2. If 0 < x < d, the quantity is self-averaging. 

3. If x = 0, the quantity exhibits a lack of self-averaging. 

We can then express (2) in terms of the exponent x describing the degree 
of self-averaging, 

r~[2(~/A--~N)+ I L-x] 1/2 (3) 

An important concept needed for this discussion is that of fixed com- 
putational effort. We wish to determine whether the statistical errors from 
a simulation of a large system are larger than, smaller than, or the same as 
those obtained from a simulation of a smaller system using the same 
amount of computer time. The number of MCS which can be performed 
using a computer time B is N= B. u(L). L -d, where u(L) is the number of 
updates performed per unit time. On a scalar computer, u(L) is very nearly 
independent of L. However, on vector and parallel computers the speed at 
which updates are performed depends on the size of the system. For exam- 
ple, the speed of a vectorized program will increase with increasing system 
size until the size of the vectors used reaches the pipe length of the com- 
puter. With an efficient vectorized program, u(L) can vary by an order of 
magnitude or more as L is increased, although eventually u(L) becomes 
independent of L. In Fig. 1, we show the size dependence of u(L) for the 
vectorized multispin coding program used in this study. (m This program 
packs q = 2 t (l = 1,..., 6) spin variables per word with the requirement that 
the system size L be an integer multiple (greater than two) of q. For  fixed 
q, u(L) increases monotonically with L, but jumps in u(L) occur when 

u ( L )  o o o 

10 6 [ 
+ 

0 40  80  120 160 2 0 0  
L 

Fig. 1. Speed of the simulation algorithm used for this study on the CDC Cyber 205 (in 
updates per second) as a function of system size. The symbols correspond to the different 
numbers of spins packed per word ( +  for 4 spins; O for 8; A for 16; V for 32; [] for 64). 
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adjacent system sizes have different q values. For a fixed computer time, the 
size dependence of the relative statistical error is given by 

FZ(r/At) + 1 ]1/2 
r~  L u~)- Ld x (4) 

Finally, we must include the size dependence of the correlation time r. 
At a phase transition, the correlation time increases with increasing system 
size as L z, where z is the dynamic critical exponent. Away from a 
transition, where the correlation time is independent of system size, we use 
z = 0. Assuming that z/At >> 1, we have 

FU+~ x]1/2 
' ~  L (5) 

With this formula for the relative statistical error we are now ready 
to discuss how this error varies with system size for different kinds of 
quantities with different degrees of self-averaging. 

2.1.1. Strongly S e l f - A v e r a g i n g  Quant i t i es .  For strongly self- 
averaging quantities, x = d in (5), so that the size dependence of the relative 
statistical errors is given by [LZ/u(L)]l/2. An example of a strongly self- 
averaging quantity is the magnetization per particle of a spin system below 
its transition temperature. For  this situation, the correlation time is also 
fairly independent of L(z = 0), so that the relative error varies like u(L) 1/2. 
For scalar programs, where u(L) is constant, this means that the relative 
error, for fixed computational effort, is independent of system size, so that 
simulations of large and small systems are equally efficient as far as statisti- 
cal errors are concerned. On a vector computer, u(L) increases with 
increasing L over some range of system sizes, so that for L within this 
range, the relative statistical error for fixed computational effort decreases 
as the system size is increased. Therefore, simulations of larger systems are 
more efficient than simulations of smaller systems within this range. 
However, for sufficiently large systems u(L) is constant even for vector 
computers, so that the statistical errors are unaffected by increases in the 
system size. But if z > 0, it becomes inefficient to increase L. 

2.1.2. Self -Averaging Quantities.  The energy per particle at a 
second-order phase transition is an example of a self-averaging quantity. 
The relative fluctuations in <E)  decrease like L -(a a/v), with c~ and v being 
the critical exponents for the specific heat and correlation length, respec- 
tively. Because d - x  in Eq. (5) is positive in this case, the size dependence 
of the relative error for self-averaging quantities is qualitatively different 
from that for strongly self-averaging quantities. Asymptotically, for u(L) 
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constant, the statistical error increases with increasing system size like 
L (J-x)/2, even when the correlation time is constant, so that it is inefficient 
to into'ease the system size. At a phase transition the situation is even worse 
because z r  so the errors increase even more rapidly. For moderate 
system sizes, it will still be efficient to increase the system size provided that 
the program speed u(L) increases more rapidly than L a+z-x, While this 
may be possible in special cases, in general the speed of a vectorized 
program will not increase this rapidly. (For most vectorizabte simulation 
algorithms, z ~-2, so that the errors increase very rapidly.) 

2.1.3. Non-Self-Averaging Quantities. The analysis of statisti- 
cal errors for quantities which exhibit a lack of self-averaging is 
qualitatively the same as that for self-averaging, but not strongly self- 
averaging quantities. Asymptotically it is inefficient to increase the system 
size, because the statistical errors increase like L (d+z)/2 for fixed computa- 
tional effort. For  moderate system sizes it is even less likely that u(L) will 
increase rapidly enough to make increasing the system size efficient. 

The case of non-self-averaging quantities is important because 
response functions, such as the magnetic susceptibility Z, exhibit a lack of 
self-averaging. MBH have shown that the relative fluctuations in )~ can be 
expressed in terms of the fourth-order cumulant of m, Urn, as 

( z 2 ) -  ( z )  2 
-2 -3Urn  <z) 2 

where 
(m 4 ) -  4 ( m 3 ) ( m )  + 6 ( m 2 ) ( m )  2 -  3 ( m )  4 

U m = l  3( (m2)2_2(m2) (m)2+(m)4)  

In situations where ( m )  = O, this reduces to the familiar result 

(m 4 ) 
U m = t  3(m252 

Away from a phase transition, U m tends to zero as L is increased while at 
the transition U~ tends toward a universal constant U*. 

2.2. Systemat ic  Errors in the M C  Sampling 
of Response Functions 

The goal of an MC simulation is to calculate the expectation value of 
thermodynamic quantities using the probability distribution P ( X ) =  
( l /Z)  e - ~ x ) ,  where Z is the partition function for the system, fl = 1/kB T, 
and X represents a system configuration, iF(X)  is the Hamiltonian of 
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the system. However, a finite-length MC simulation generates only a finite 
population of samples of the distribution P(X). It is well known that cer- 
tain quantities calculated from a finite population suffer from systematic 
errors due to the finite number of samples. For example, when estimating 
the variance s 2 of a probability distribution using n independent samples, 
the expectation value of the variance obtained E(s 2) is systematically lower 
than the true variance of the distribution a 2. It can easily be shown that the 
relationship between the two is given by 

Because the susceptibility )~ is simply the measured variance of the 
magnetization, it is important  to keep this systematic error in mind when 
the number of updates is small. Because an MC simulation does not 
provide statistically independent measurements, the relationship between 
the measured and correct values of )~ is more complicated than that given 
in Eq. (6). Using the [act (3) that the number of independent measurements 
obtained from N correlated measurements is n = N/[2(r/~t) + 1 ], we have 

Z N : X ~  [ 1 2(r/At)+l] 
N (7) 

where )~N is the expectation value of the susceptibility when N 
measurements are made and X~ is the true expectation value of the suscep- 
tibility. This effect becomes very important  at a phase transition where one 
uses the values of Z from different system sizes to determine the critical 
exponent 7Iv. Because the correlation time depends on the system size, we 
see that the systematic error in 7~ will be different for different system sizes. 
The value of the exponent obtained using finite-size scaling methods will 
depend on the number of updates performed. In the next section we will 
present a study of this effect for the d = 3 Ising model. 

3. M C  S I M U L A T I O N S  

To test the formalism developed in Section 2, we chose to study the 
d =  3 nearest-neighbor Ising model. Simulations were performed at the 
infinite-lattice transition temperature T~ -1 =0.221654 (see footnote 3) on 

3 The value of T~ -~ used for the simulations in this study was taken from ref. 12. More recent 
work using MCRG calculations, {13) reanalysis of series expansion results, {14~ and high- 
resolution MC simulations ~15) have provided results of comparable accuracy, although the 
results do not agree within the quoted error bars. The results presented in this paper are not 
of high enough precision to be affected by such small deviations from the true 7",. 
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system sizes ranging from L = 16 to L =  96 using an ultrafast multispin 
coding algorithm written for the CYBER205 at the University of 
GeorgiaJ 11) The peak speed of this program is 2 x l 0  7 spin flip trials per 
second. Between 3 and 5 x 10 6 MCS were performed on all system sizes, 
except L = 16, where 1.2 x 107 updates were performed. Data were taken at 
intervals of At = 10 MCS. The long-time exponential relaxation time r 0 for 
each lattice size has been measured and presented elsewhere. (~6) Data for 
times < 10% were discarded for equilibrium. 

In Fig. 2, we plot time-displaced autocorrelation functions for the 
energy E, energy squared E 2, magnetization m, and magnetization squared 
m 2 measured for the L =  16 lattice. It is necessary to measure these 
autocorrelation functions to calculate the integrated correlation times 
needed for this analysis. From the plots in Fig. 2, we see that the 
magnetization squared, energy, and energy squared all have the same long- 
time relaxation time (ro-~ 63 MCS). However, the integrated correlation 
times are different for the three quantities (~ = 51 MCS for the magnetiza- 
tion squared; v = 35 MCS for E and E 2 ) .  The long-time relaxation time 
for the magnetization (~0 -  421 MCS) is considerably longer than that of 
the other three quantities. Our estimates for the correlation times were 
extracted from analyses which included data for much larger values of time 
displacement than are shown in Fig. 2, where for clarity we only show the 
relaxation functions for a restricted region of time displacement. Note that 
a simple estimate of relaxation times following Miiller-Krumbhaar and 
Binder (3) suggests that Tm2 = l z "  m ,  This approach clearly fails. It is impor- 
tant to note that for the same bin length N, the number of independent 
measurements n = N/[2(v/At) + 1 ] differs for different quantities. In Table I 
we show the integrated relaxation times for the specific heat (rc) and 
magnetic susceptibility (zx). Note that rz is approximately 11 times as large 

Fig. 2. 

1 0  ~ 

1 0  -1 

@It) 

1 0 -2 

O 5 0  1 0 0  1 5 0 2 0 0 2 5 0 3 0 Q  

t 

Semilog plot of time-displaced autocorrelation functions for E, E 2, m, and m 2 for the 
L = 16 lattice at T,. The time t is measured in MCS. 
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Table I. Estimates for the Integrated Relaxation Times, 
in MCS, for the Specific Heat, ~c, 
and the Magnetic Susceptibility, ~x 

L z c ~ 

16 35 395 
32 130 t640 
48 420 3745 
64 545 6935 
96 1305 15480 

as rc ,  so that for a given bin size N, the statistical and systematic errors 
will be more pronounced for the susceptibility than for the specific heat. If 
the decay of the autocorrelation function is a pure exponential, as is nearly 
the case for the magnetization, the exponential (%) and integrated (r) 
correlation times will be equal, while for multiexponential decays, z < to. 

As we saw in Section 2, the relative fluctuations in Z are given by 
(2-3Urn) .  The relative statistical error in Z, from Eq. (2), is then 

r = [(2 - 3Um)/'n] 1/2 (8) 

This will be valid when the number of measurements made is large enough 
that systematic errors in the response function are small. To test this, we 
divided our data into M bins of different lengths N (N ranging from 5 to 

A% 
% 

0 . 4  

0 . 3  

n O . 2  

0 .1  

�9 L.=16 O /  

o L=32 �9 0 / 

�9 L=48 ~ / 

z~ L.=64 ~ / / /  �9 

0 ID 

O.O 

0 . 0  0. t ' 0 .2  0 . 3  0 .4  
-1/2 

n 

Fig. 3. Plot of scaled relative error in Z vs. n 1/2, where n = N / [ 2 ( r / A t )  + 1 ] is the number  
of independent measurements.  The straight line has slope = 1 and passes through the origin. 
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ZXC 

C 

Fig. 4. 

0.4 

0.2 

- -0 .2  �9 L=96 / _  
/d " 

O1 r ~ "  

O.0 

�9 L = 1 6  / ~ 0  o L=32 A~ 
�9 L=48 

L=64 

0 . 0  0 .1  0 . 2  0 . 3  
-1/2 

n 
Plot of scaled relative error in C vs. n t;2. 

0.4 

105). The response functions Z and C (specific heat) were measured over 
each bin and the statistical error in the response function was estimated 
from the variance over the M different bin values. In Fig. 3 we show a plot 
of the relative error in the response function X scaled by ( 2 - 3 U m )  1/2 as a 
function of n -  V2. This plot should give a straight line of slope unity passing 
through the origin. The corresponding plot for C is given in Fig. 4. In both 
plots there are fluctuations about the straight line, but no systematic devia- 
tions. From this, we conclude that the formalism presented in Section 2 is 
applicable and that response functions exhibit a lack of self-averaging. 

Fig. 5. 

1 0  s 

1 0  2 

X 
1 0  ~ 

1 0  0 

o L=32 ~ o o 

�9 L=48 

a L=64 , e ~ / ~  ~ r - A ~ -  " " -. : 

1 0  ~ 1 0  1 1 0  2 1 0  s 1 0  4 1 0  s 

N 
Systematic deviations in the values of Z obtained using M bins of N data points each. 
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Fig. 6. 

4 x 1 0  ~ 

C 

1 0  ~ 

4 x 1 0 -  

1 0  0 

�9 L = 1 6  

o L = 3 2  

�9 L=48  ~ 0 -4? 0 0 

a, L = 6 4  ~ '~" ~ ~" '~ 

1 0  ~ 1 0  2 1 0  3 1 0  4 1 0  s 

N 
Systematic deviations in the values of C obtained using M bins of N data points each. 

While these statistical errors dominate for long MC runs, for short 
runs both systematic and statistical errors are important. In Figs. 5 and 6 
we demonstrate this by plotting the measured response functions Z and C 
as a function of bin size N. The systematic effect of having a finite bin size 
can clearly be seen, especially for Z. (The correlation time corresponding to 
X is approximately 11 times larger than that for C.) For  the largest lattice, 
L = 96, the systematic error in Z is still noticable, even for the largest bin 
size N =  105 (which corresponds to 106 MCS!). 

2 . 0  

1.5 

"7 
1.0  

Y 
0 . 5  

0 . 0  

1 0  ~ 

S 
/ 

J 

~ , ,  ,,i . . . . . . . .  i . . . . . . . .  I . . . . . . . .  J 

1 0  1 1 0  2 1 0  3 f lO ~ 1 0  5 
N 

Fig. 7. Variation of 7Iv, determined by finite-size scaling, with the number of samples N. 
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As ment ioned  in Section 2.2, this systematic error  in Z can affect the 
value of 7/v measured  using finite-size scaling. To  demons t ra te  this effect, 
we calculated the exponent  7/v by fitting the measured values of Z for each 
lattice size to Z = aL~/V. The calculation of 7/v was repeated for several dif- 
ferent values of the bin size N. The results obta ined are shown in Fig. 7. 
Even for a bin size N =  10 4, which corresponds  to 105 M C  updates/spin,  
the measured  value differs from the accepted value 7/v = 1.97 by more  than 
6 %. In some M C  studies this effect could be even worse because one often 
uses shorter  runs for the larger lattices! (For  this calculation we used the 
same N for each lattice size.) This effect should be a part icular  p rob lem for 
spin glasses and related r a n d o m  systems where z is very large. 

The  systematic error  in Z depends only on the number  of independent  
measurements  n made.  Therefore plots of scaled susceptibility zL -~/v vs. 
scaled bin size n for different lattice sizes should collapse onto a single 
curve. This plot  for the susceptibility is shown in Fig. 8. The solid curve 
comes f rom Eq. (7). Such a scaling plot for the specific heat is more  dif- 
ficult, as the slow divergence in C is super imposed on a relatively large 
background  term. If  this background  is subtracted off, the specific heat also 
scales nicely using a value of v = 0 . 6 2 9  (or ~/v =0.18) ,  in good agreement  
with recent est imates for v (see footnote  3 and refs. 17 and 18). This scaling 
curve is given in Fig. 9. 

0 . 4  A L=16 

X n L--'y/" 

0.0 

o L=32 ~ ~  
[ ]  L = A 8  ~ ,,x 0 . 3 5  

z~ L=64 

l~ o.oo 

~,,,,~ . . . . . . . .  / . . . . . . . .  o:00 . . . . .  n . - I  . . . .  o.3s 

~i0  -~ I 0  o 1 0  ~ 1 0  2 1 0  3 

n 
Fig. 8. Scaled susceptibility vs. scaled bin length n. The solid line is the scaling curve 
predicted by Eq. (7). In the inset the reduced systematic error Azn = 0%~ Zn)/Z~ is plotted 
vs. n -1 to highlight the large-bin-length behavior. The solid line, with slope = 1, is predicted 
by Eq. (7). 
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2.25 

0.00 
I0- 10 1 0 2 1 0 3 1 0  

n 
Fig. 9. Scaled specific heat (singular portion) vs. scaled bin length n. A background value of 
C O = -1.6 has first been subtracted off. The solid line is the scaling curve predicted by Eq. (7). 
The inset shows the reduced systematic error ACn = ( C ~ -  Cn)/C~ plotted as a function of 
n- ~ as in Fig. 8. 

4. C O N C L U S I O N S  

From the results obtained, we can draw several general conclusions 
concerning ways to minimize systematic and statistical errors in functions 
measured during an M C  simulation. 

For  response functions, it is clear that  the only way to decrease 
systematic errors is to perform simulations that  are very long compared  to 
the correlation time. Finite-size effects (i.e., corrections to finite-size scaling) 
provide a lower bound  on the system sizes to be studied, while the upper 
bound  depends upon  the amount  of computer  time available. Because 
response functions are not  self-averaging, the statistical errors are not 
decreased by increasing the system size at fixed computa t ional  effort. 
Therefore, from the point  of view of both statistical and systematic errors, 
it is never advantageous to perform short simulations on large lattices to 
measure response functions. Of  course, systems which are too small also 
cannot  be used to extract critical exponents due to unknown corrections to 
finite-size scaling. 

If it is not  necessary to measure response functions during an M C  
study, the conclusions are not as clear. When  the quantities measured are 
not  strongly self-averaging, for example at a phase transition, the above 
argument  holds and a simulation of a larger system is less efficient than a 
simulation of a smaller system. Away from a phase transition, where the 
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thermodynamic densities are strongly self-averaging and the correlation 
time does not increase with increasing system size, we found that the 
statistical error remains constant, or even decreases, as the system size is 
increased, depending on the simulation algorithm and computer type used. 

Although we have presented results for only a single kinetic model, the 
formalism is quite general and can be applied to different models and 
simulation techniques. We have seen that many factors must be taken into 
account in order to choose optimally the size of systems simulated in an 
MC study. Some of these are directly related to the model being studied, 
such as the finite-size effects which determine the lower bound for the 
system sizes, and the degree of self-averaging exhibited by the quantities to 
be measured. The variation of the speed of the simulation with system size 
also plays a role. For systems undergoing a phase transition, the size 
dependence of the correlation time, determined by the model and the 
simulation algorithm used, must also be taken into account. 

We suggest that for high-precision estimates of critical exponents from 
finite-size scaling, the scaling analysis of the data as a function of the scaled 
bin length (as shown in Figs. 8 and 9) should be carried out. 
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